Leaf gas exchange performance and the lethal water potential of five European species during drought.

نویسندگان

  • Shan Li
  • Marion Feifel
  • Zohreh Karimi
  • Bernhard Schuldt
  • Brendan Choat
  • Steven Jansen
چکیده

Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.

Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions rang...

متن کامل

Hydraulic failure defines the recovery and point of death in water-stressed conifers.

This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering...

متن کامل

Seasonal variation in the maximum rate of leaf gas exchange of canopy and understory tree species in an Amazonian semi-deciduous forest

Leaf gas exchange, water potential, and specific leaf area of two tropical semi-deciduous tree species, Brosimum lactescens S. Moore and Tovomita schomburgkii Planch & Triana, were quantified to establish how these properties were affected by seasonal variations in rainfall and leaf canopy position. The study was conducted at a site near Sinop Mato Grosso, Brazil, which is located within the ec...

متن کامل

Individual and interactive effects of drought and heat on leaf physiology of seedlings in an economically important crop

Heat waves in combination with drought are predicted to occur more frequently with climate warming, yet their interactive effects on crop carbon and water balance are still poorly understood. Hence, research on the capacity of crops to withstand and recover from the combined stress is urgently needed. This study investigated the effects of drought and heat wave on a crop species as well as the ...

متن کامل

Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 36 2  شماره 

صفحات  -

تاریخ انتشار 2016